Билет 3
1. Дискретное представление информации: двоичные числа; двоичное кодирование текста в памяти компьютера. Информационный объем текста.
Вся информация, которую обрабатывает компьютер, должна быть представлена двоичным кодом с помощью двух цифр 0 и 1. Эти два символа принято называть двоичными цифрами или битами. С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.
Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.
Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.
С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:
0 – отсутствие электрического сигнала;
1 – наличие электрического сигнала.
Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.
В основу представления чисел в компьютере была положена именно двоичная система счислении.
Для записи информации о количестве объектов используются числа. Числа записываются с помощью набора специальных символов.
Система счисления — способ записи чисел с помощью набора специальных знаков, называемых цифрами.
Системы счисления подразделяются на позиционные и непозиционные.
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе.
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе.
Непозиционные системы счисления.
Каноническим примером фактически непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы: I обозначает 1, V - 5, X - 10, L - 50, C - 100, D - 500, M -1000. Натуральные числа записываются при помощи повторения этих цифр. При этом если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая — перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.
Например, II = 1 + 1 = 2
Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц.
Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII.
MCMXCVIII = 1000+(1000-100)+(100-10)+5+1+1+1 = 1998
Позиционные системы счисления.
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе. Количество используемых цифр называется основанием системы счисления.
Самой первой такой системой, когда счетным "прибором" служили пальцы рук, была пятеричная.
Потом возникла двенадцатеричная система счисления. Широкое распространение получила двенадцатеричная система счисления в XIX веке.
Следующая позиционная система счисления была придумана еще в Древнем Вавилоне - шестидесятеричная, т.е. в ней использовалось шестьдесят цифр! В настоящее время наиболее распространены десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Современные компьютерные системы оперируют информацией представленной в цифровой форме. Числовые данные преобразуются в двоичную систему счисления.
Двоичное кодирование текстовой информации
Начиная с 60-х годов, компьютеры все больше стали использовать для обработки текстовой информации и в настоящее время, большая часть ПК в мире занято обработкой именно текстовой информации.
Традиционно для кодирования одного символа используется количество информации = 1 байт (1 байт = 8 битов).
Для кодирования одного символа требуется один байт информации.
Учитывая, что каждый бит, принимает значение 1 или 0, получаем, что с помощью 1 байта можно закодировать 256 различных символов. (28 = 256)
Кодирование заключается в том, что каждому символу ставиться в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).
Важно, что присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется кодовой таблицей.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды), называется таблицей кодировки.
Для разных типов ЭВМ используются различные кодировки. С распространением IBM PC международным стандартом стала таблица кодировки ASCII (American Standard Code for Information Interchange) – Американский стандартный код для информационного обмена.
Стандартной в этой таблице является только первая половина, т.е. символы с номерами от 0 (00000000) до 127 (0111111). Сюда входят буква латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы.
Остальные 128 кодов используются в разных вариантах. В русских кодировках размещаются символы русского алфавита.